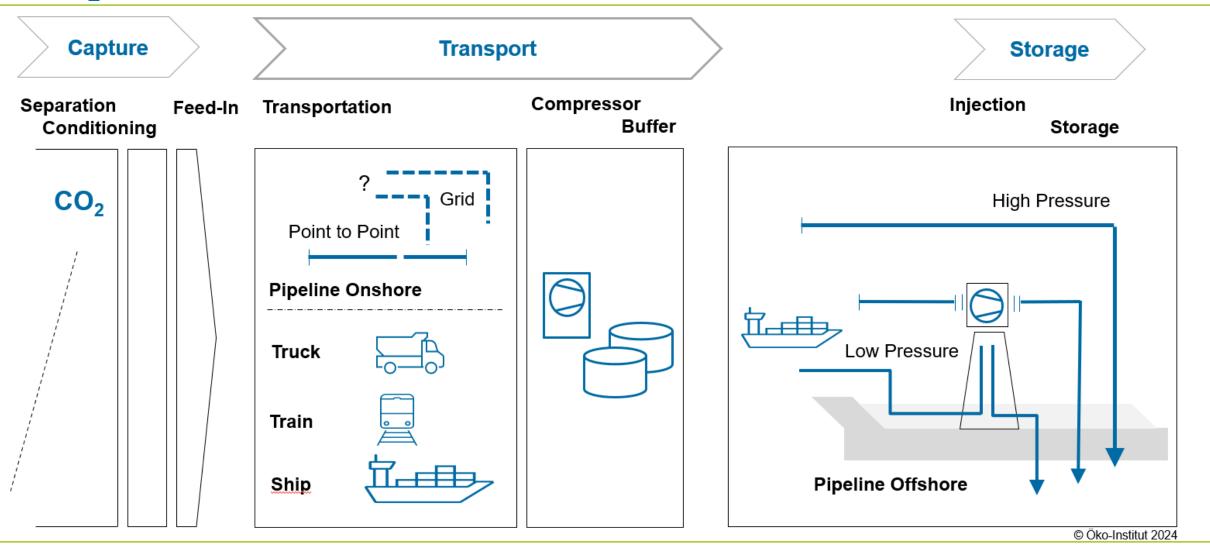


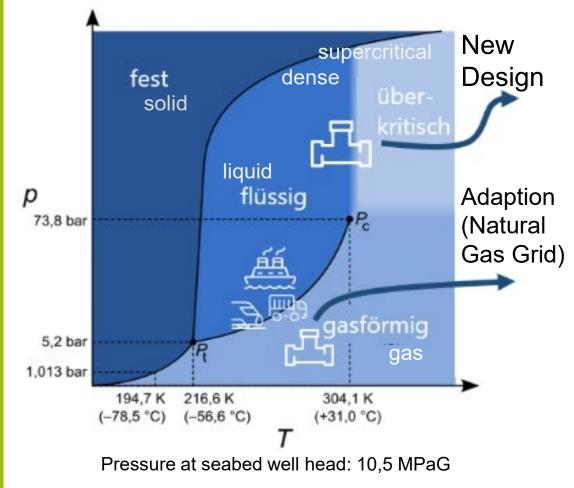
Transport: CO₂ conditions during transport


Risks of transport by trains, ships, and pipelines

Stephan Kurth

Apr. 2024

CO₂ Transport System Configuration


Considerations

Priority: safe and efficient transport, continous and under constant conditions

- Transport Route
 - Distance
 - Site
 - Transportation Infrastructure
- CO₂ Stream
 - Quantity and Quality (Impurities)
 - Conditions, Mode
- Technical Reliability, Design Features
- Legal Requirements
- Risks, Uncertainties
- Costs

Transport Modes and Capacities

Transport	Mode	Conditions	Capacity
Roadway	liquid	1,7 – 2 MPa 243 – 253 K	18 t (car)
Railway	liquid	0,65 – 2,6 MPa 223 – 253 K	62 t (car)
Marine Ships	liquid	0,65 – 4,5 MPa 221 – 283 K	20 (40) Mt (ship)
Pipeline	vapor / dense	4,8 – 20 MPa 283 – 307 K	

Characteristics of Transportation Systems

Technical Risks

Challenges

- development of a new and significantly enhanced CO₂ transport infrastructure
- change of CO₂ transport mode and conditions (transport in subcritical/dense phase)
- conversion of existing infrastructure (natural gas) for the transport of CO₂ (as possible)
- adverse effects of impurities in the CO₂ stream
- implementation of adapted design specifications and standards

Risks and Fault Mechanisms \rightarrow Cracks, Rupture \rightarrow Leakage, Sudden Release

- corrosion, degradation, chemical reaction
- technical failures followed by loss of function, system breakdown, energy constraints
- human failures
- external hazards

Significance of Impurities

Impurities in the CO₂ stream can influence ...

- transport conditions
- transport grid
- corrosion mechanisms
- material properties
- explosion / fire risks
- hazards to human health and the environment
- controle, surveillance

Table 2

Impurity Tolerance and Effects in post-combustion CO₂ Capture Processes (Razak et al., 2023).

Component	Maximum allowable concentration (Mol %)	Effects
H2S	3.25	Decreased solvent efficiency, promoted corrosion, catalyst poisoning
SO2	2.5	Increased corrosion, adverse environmental effects
02	1.75	Solvent degradation, diminished CO ₂ capture efficiency
H2	1.65	Heightened flammability, potential explosion risk
со	0.2	Solvent regeneration processes disruption

Thank you for your attention!

Questions

